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Differential Equations
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D i ff e r e n t i a l E q u a t i o n s

Often we have a variable that depends on time:
xt in discrete models
x(t) in continuous models

This variable reflects the state of a system at the point in time t. Let
xt , x(t) ∈ X ⊆ Rn. This is called the state vector.
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D i ff e r e n t i a l E q u a t i o n s

The state vector reflects the state of the system (for example the economy), and it is
interesting to understand how this state changes over time.
In this environment, the state of the system will depend on the initial condition (x0),
the period (t ∈ R), and the parameters of the system (θ ∈ Θ ⊆ Rp).
Then we can define the function flow:

φ : X ×R+ ×Θ → Rn

xt = φ(x0, t, θ)
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D i ff e r e n t i a l E q u a t i o n s

φ describes the system for every period, given the initial state and parameters, and
therefore, replacing t for every period of our interest, we can pin down the state of the
system.
Usually the challenge is to find φ from an initial system of differential equations.
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D i ff e r e n t i a l E q u a t i o n

D e fi n i t i o n

An ordinary differential equation is an equation of the form

x (m)(t) = F [t, x(t), ẋ(t), ẍ(t), . . . , x (m−1)(t), θ]

Where x(t) = [x1(t), x2(t), . . . , xn(t)] is a vector-valued function of a real variable that
we will interpret as time (t), and

ẋ(t) =
[

dx1(t)
dt ,

dx2(t)
dt , . . . ,

dxn(t)
dt

]
is the first derivative of x(t) with respect to time, and ẍ(t) is the second derivative and
x (m) its mth derivative, θ ∈ Θ ⊆ Rp is a vector of parameters, and F (·) is a function
R1+n(m−1)+p → Rn that is typically assumed to be at least once differentiable.
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D i ff e r e n t i a l E q u a t i o n

The solution to this differential equation, is to find a function x(t) such that along
with its derivatives with respect to time

x (m)(t) = F [t, x(t), ẋ(t), ẍ(t), . . . , x (m−1)(t), θ]

is satisfied.

In the case of working in a discrete environment, xt is a sequence instead of a function
x(t). We just saw a basic example within a discrete environment, but the whole
analysis will now focus on continuous environments (looks harder, but it is easier...)
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D i ff e r e n t i a l E q u a t i o n

D e fi n i t i o n

A differential equation is linear if F (·) is linear in x(t) and its derivatives, but not
necessarily in t or θ.

D e fi n i t i o n

A dynamical system is autonomous if t does not appear as an independent argument
of F (·) but enters only through x(t) and derivatives.
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D i ff e r e n t i a l E q u a t i o n

A system being linear or not has huge implications. For linear systems it is in general
possible to find an analytical solution, while for nonlinear solutions in general you need
to use numerical solutions (particular instead of general) or do only qualitative analysis.

For non linear autonomous systems of one or two dimensions, qualitative results can be
obtained easily with graphical representations. For higher dimensions, it is necessary to
rely on linear approximations.
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D i ff e r e n t i a l E q u a t i o n

D e fi n i t i o n

The order of a differential equation is the order of the highest derivative of x(t) that
appears on it.

F a c t

Any system of differential equations can be reduced to an equivalent first-order system
by introducing additional equations and variables.
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D i ff e r e n t i a l E q u a t i o n

E x a m p l e

Consider the second-order differential equation

ẍ(t) = aẋ(t) + bx(t)

Let y(t) = ẋ(t),
ẏ(t) = ay(t) + bx(t) and ẋ(t) = y(t)

In conclusion, without loss of generality we restrict our analysis first order systems of
differential equations of the form:

ẋ(t) = f (x(0), t, θ)
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G e o m e t r i c a l I n t e r p r e t a t i o n
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D i ff e r e n t i a l E q u a t i o n s

So as we see, we can find φ(x0, t, θ), but this is not unique! it depends on the initial
value we choose. This is why this could be called general solution. To pin down a
particular solution, a traditional way is to fix the initial value of x0 or x(t = 0), the
starting point. Note however that we could have fixed x(1) or more generally x(t̂) with
the same effect. If we can obtain x(t) from x(0), we can get x(0) from x(t)!
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D i ff e r e n t i a l E q u a t i o n s

Consider the continuous system

ẋ(t) = f (x , θ, t) (1)

where f : X ×Θ× I → X , and I ⊆ R compact and convex.

D e fi n i t i o n

A particular solution of (1) is a differentiable function φ(t) : Jφ → X , defined on
some interval Jφ ⊆ I called its interval of definition, and taking values in X , that
together with its derivative satisfies the differential equation (1) in Jφ, that is such that

φ′(t) = f [φ(t), θ, t]∀t ∈ Jφ
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D i ff e r e n t i a l E q u a t i o n s

D e fi n i t i o n

Given a solution φ(t) of the differential equation (1) defined on the interval Jφ, we
define the orbit of (1) induced by φ as the set

γ(φ) = φ(Jφ) = {x ∈ X ; x = φ(t) for some t ∈ Jφ}
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D i ff e r e n t i a l E q u a t i o n s

T h e o r e m

Let f : X × I ×Θ ⊆ Rn+p+1 → Rn be (at least) once differentiable on the set
X × I ×Θ, where X and Θ are open sets, and I is an interval in the real line. Then the
boundary-value problem

ẋ = f (x , θ, t), x(t0) = x0
has unique solution φ(t) = φ(t, x0, t0, θ) for each (x0, t0, α) ∈ X × I ×Θ defined on a
maximal open interval Jm = (x0, t0, α) ⊆ I containing t0 that depends on the initial
data and parameters of the problem. That is, if Ψ(t) is a solution defined on some
interval JΨ, then Jψ ⊆ Jm(x0, t0, θ) and Ψ(t) = φ(t) for all t ∈ Jψ. Moreover, the flow
of the system, φ(t, x0, t0, α) is at least once differentiable.
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E x a m p l e

Consider the system
ẋ = f (x) = 3x2/3 and, x(0) = 0

1. Rewrite
ẋ =

dx
dt = 3x2/3

2. Rearrange

dt =
x−2/3

3
dx

3. Integrate both sides ∫
dt =

∫ x−2/3

3
dx ⇒ c + t = x1/3
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E x a m p l e
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E x a m p l e

So the functions of the form
x(t) = (c + t)3

are solutions of the given differential equation. Now, note the initial condition
x(0) = 0,

x(0) = (c + 0)3 ⇒ 0 = c3 ⇒ c = 0

Finally,
x(t) = t3
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P h a s e D i a g r a m s

Consider the following system of equations in the plane:

ẋ = f (x , y)
ẏ = g(x , y)

With f and g differentiable.
Set ẋ and ẏ equal to zero. This finds the region where these variables do not change
over time, these lines are called phase lines.

ẋ = 0 ⇒ f (x , y) = 0

ẏ = 0 ⇒ g(x , y) = 0
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P h a s e D i a g r a m s

The phase line ẋ = 0 divides the (x , y)
plane into two regions.

1. In one of them ẋ > 0, so x ↑,
2. and the other ẋ < 0 so x ↓.

x

y

ẋ = 0

ẋ < 0 ⇒ x(t) ↓

ẋ > 0 ⇒ x(t) ↑
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P h a s e D i a g r a m s

The phase line ẏ = 0 divides the (x , y)
plane into two regions.

1. In one of them ẏ > 0, so y ↑,
2. and the other ẏ < 0 so y ↓.

x

y

ẏ = 0
ẏ < 0 ⇒ y(t) ↓

ẏ > 0 ⇒ y(t) ↑
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P h a s e D i a g r a m s

The direction in which the large arrows are pointing (and for the sake of the argument
the phase lines too) could seem arbitrary, and they are, just an example.

To determine in which side of the phase line the variable increases or decreases we
could evaluate their derivatives:

∂ẋ
∂x =

∂f (x , y)
∂x

∂ẏ
∂y =

∂f (x , y)
∂y

Then evaluate it at a convenient point, say a point in the phase line. If the derivative
is positive, this means it increases, and therefore to the right it will be increasing even
further. The opposite is true if the derivative is negative.
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P h a s e D i a g r a m s

x

y

ẏ = 0

ẋ = 0

x

y

ẏ = 0

ẋ = 0

y

x
(x , y) is a steady state of the system, note that at this point ẋ = 0 and ẏ = 0.

P. Fagandini
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ẋ = 0

x

y
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L o c a l A n a l y s i s b y L i n e a r i z a t i o n

Let f : x ⊆ Rn → Rn, differentiable, and x0 ∈ X . By the Taylor expansion we can
write:

f (x) = f (x0) + Df (x0)(x − x0) + Ef (x − x0)

with l i m x→x0
||Ef (x−x0)||
||x−x0|| = 0. Consider also a nonlinear autonomous system

ẋ = f (x)

And let x be a steady state of the system, then the linear system

ẋ = Df (x)(x − x)

can be expected to be a reasonable approximation of the original system around the
equilibrium point x .
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L o c a l A n a l y s i s b y L i n e a r i z a t i o n

T h e o r e m

Consider the system ẋ = f (x), where f : X ⊆ Rn → Rn, differentiable, and let x be an
equilibrium point of the system. The the following holds:

1. If all eigenvalues of Df (x) have strictly negative real parts, then x is
asymptotically stable.

2. If at least one eigenvalue of Df (x) has a positive real part, then x is (locally)
unstable.

3. If at least one eigenvalue of Df (x) has a zero real part, and all other eigenvalues
have negative real parts, then the equilibrium x might be stable, asymptotically
stable, or unstable.
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E x a m p l e

Consider the following system of differential equations:

ẋ = f (x , y) = y + x(c − x2 − y2) (2)
ẏ = g(x , y) = −x + y(c − x2 − y2) (3)
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E x a m p l e

Let’s show that (0, 0) is the only solution (i.e. ẋ = 0 and ẏ = 0)
1. Obviously (0, 0) is a solution, as if we replace (0, 0) we obtain ẋ = 0 and ẏ = 0.
2. If one of them is zero, then the other must be zero too! (let y = 0, then ẏ = −x ,

but in equilibrium we need ẏ = 0 so x = 0, idem for the case x = 0).
3. Let x , y 6= 0, then we can divide (2) and (3) by x and y respectively, and obtain

−y
x = c − x2 − y2

x
y = c − x2 − y2

But that means −y
x = x

y or −y2 = x2, which is only true for x = y = 0,
contradiction!
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E x a m p l e

Now let’s linearize the system, find its eigenvalues and study the stability around the
steady state (0, 0), let’s see what can we say about it.

The partial derivatives of f and g , at (0, 0), are:

fx(0, 0) = c
fy (0, 0) = 1

gx(0, 0) = −1

gy (0, 0) = c
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E x a m p l e

The coefficient matrix of the linearized system is of the form (Jacobian):

A =

[
c 1
−1 c

]
finding the eigenvalues we solve |A − λI| = 0 or the characteristic polynomial

(c − λ)2 + 1 = 0

and therefore c − λ = ±i or λ = c ± i . c is the real part of the eigenvalue, and using
the theorem we had about stability we can say:

1. If c < 0 the steady state is locally stable.
2. If c > 0 the steady state is locally unstable.
3. If c = 0 we cannot say much with the available information.
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